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ABSTRACT

A template tracking approach to the segmentation of small
3D vessel structures is presented. The main contributions are
a general formulation of a vessel template function and a mul-
tiple hypotheses tracking framework that is shown to improve
the tracking robustness. The methodology is demonstrated
using CT angiography data of the liver to which a hybrid re-
gion growing and tracking segmentation is applied.

Index Terms— vessels, segmentation, tracking, template,
multiple hypotheses, liver, arteries

1. INTRODUCTION

Computer aided vessel segmentation and vessel analysis are
important tools in non-invasive CT and MRI angiography ex-
aminations. Most vessel segmentation algorithms currently in
use are based on a growing process from a given start point;
the differences between methods are generally found in the
constraints imposed on the growing process. The simplest
method is a region growing which connects voxels with sim-
ilar image intensities. This approach works well for highly
contrasted vessels but where the contrast is low the segmenta-
tion will leak into neighboring non-vessel tissue. To combat
leakage, shape constraints and stronger vessel modeling must
be introduced. A popular class of methods includes the front
propagation or level-set techniques [1], in which the growing
process is governed by a shape factor, e.g., the curvature of the
growing front. This mitigates leakage problems and vessels
with lower contrast may be segmented. Stronger vessel mod-
eling can be implemented in a tracking framework. Tracking
approaches identify vessels segment by segment and estimate
vessel parameters such as the center line and radius as they go
along. The tracking is commonly based on edge information
in the image data, typically the second-order information in
the Hessian matrix is utilized [2]. Explicit modeling of the
vessel cross-section as an ellipse is also commonplace [3].
For smaller vessels (< 3 voxels in diameter), there may not
be enough data to fit a cross-section model and edge infor-
mation may not be reliably estimated. An even stronger form
of modeling is to describe the vessel locally as a linear tube
segment [4, 5]. In this work, a tubular tracking algorithm
based on a 3D vessel template is presented. The vessel tem-
plate is an image patch containing an idealized vessel segment
that is parameterized by the radius, center location and direc-

tion. Moreover, to traverse difficult vessel passages, such as
bifurcations and areas of low contrast, a search tree is built to
investigate different possible vessel paths.

2. VESSEL TEMPLATE

We target small low contrast vessels and therefore adopt a
tubular model as discussed in the Introduction. The model is
a template function T (x; r,x0, v̂) : R

n → [0, 1] which maps
a spatial coordinate x to the interval [0, 1]. The template func-
tion is an idealized model of a local image neighborhood cen-
tered around the spatial center point x0 through which a ves-
sel with radius r is running in the direction of the unit vector
v̂. To handle anisotropic voxels we track in a world coor-
dinate system, i.e., the unit of the parameters is millimeters.
The template has a circular cross-section, which is motivated
by the fact that small vessels generally are round and that at
small scales, the difference between a circular and an ellip-
tic cross-section is negligible. The vessel template function
is constructed as a composite function, i.e., as a function of a
function. The two functions involved are described in detail
below.

2.1. Vessel profile

The vessel profile models the image intensity variation along
a line through the center of the vessel perpendicular to the
vessel direction. The profile is a function p(d) : R → [0, 1]
where d is the distance to the vessel center. A Gaussian profile
has been used previously in the literature [6] and we use a
similar function

p(d; r) = 2−
d
2

r2 . (1)

Note that the profile function attains the value 0.5 for d = r,
i.e., the Full Width Half Maximum (FWHM) of the function
equals the diameter of the vessel.

2.2. Distance to a straight line

The second part of the template function is the minimum dis-
tance d from a point x ∈ R

n to a line running in the direction
v̂ through the point x0, see Fig. 1a. This distance is straight-
forwardly found via the Pythagorean theorem

‖x− x0‖
2 = d2 +

∥∥v̂T (x− x0)
∥∥2 (2)
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Fig. 1. a) Distance d from the point x to the straight line
running in direction v̂ through the point x0. b) A search tree
of depth 3 representing several possible vessel paths.
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Fig. 2. The vessel template is generated by first calculating
the distance to the line spanned by the template (left) and then
applying a vessel profile function to this distance (right).

where ‖x− x0‖ is the distance between x and x0, and
v̂

T (x− x0) is the projection of the vector (x− x0) onto
the unit vector v̂. We now make the distance a function

d(x;x0, v̂) =

√
‖x− x0‖

2
− ‖v̂T (x− x0)‖

2 (3)

parameterized by the center point x0 and the direction v̂.
Note that Eq. 3 is valid for any dimension, i.e., 2D, 3D, 4D
etc.

2.3. The vessel template

The vessel template function is finally defined as the compos-
ite of the functions p(d; r) and d(x;x0, v̂)

T (x; r,x0, v̂) = p ◦ d(x) = p (d(x;x0, v̂); r) . (4)

Hence, to calculate the template value for a spatial location x,
we first calculate the squared distance to the line spanned by
the template center and the vessel direction. This distance
is then mapped through the vessel profile function p(d; r).
Again, note that the vessel template function is general in that
it can produce templates of arbitrary dimension. An example
of a 2D vessel template generation is shown in Fig. 2.

2.4. Vessel template fitting

A local image neighborhood around a vessel template is mod-
eled using a linear model, i.e., the voxel intensity I(x) at spa-

tial location x ∈ R
n is modeled as

I(x) = k T (x; r,x0, v̂) + m + ε(x), (5)

where k is the vessel local contrast and m is the local mean
image intensity level. The remaining term ε(x) represents
noise and interfering surrounding structures. To localize the
fit of the vessel template to the image data, a Gaussian weight
function centered over x0 and with a width depending on the
vessel radius is used. The image voxels with a non-negligible
weight (e.g., > 0.05) are denoted by xi, i = 1 . . . n. The
best template fit is defined as the solution to the following
weighted least squared problem:

min
r,x0,v̂,k,m

‖W(r,x0) [k T(r,x0, v̂) + m− I]‖2 , (6)

where I and T(r,x0, v̂) are (n×1) vectors containing the im-
age data and template values for the spatial locations xi, i =
1 . . . n. W(r,x0) is a diagonal matrix with the corresponding
weights. We note that the least squares problem in Eq. 6 is lin-
ear in the image parameters k and m but nonlinear in the ves-
sel parameters r, x0 and v̂. This is known as a separable non-
linear least squares problem and a solution can be found by an
iteration where the linear parameters are solved for while the
nonlinear parameters are kept constant and vice versa [7]. The
derivatives of the template function T (x; r,x0, v̂) with re-
spect to translation, rotation and a radius change are required
for the optimization. These are straightforwardly calculated
but left out here due to space limitations.

2.5. Vessel template significance

A relevant question is whether the image data supports the
hypothesis of the existence of a vessel with radius r at spatial
location x0 running in direction v̂? To test this hypothesis,
we investigate if the vessel contrast k is significantly different
from zero. The classical way of doing this is to calculate a
t-statistic t = k

std(k) where std(k) is the standard error, i.e.,
the square root of the variance, of the estimator of k. To cal-
culate the standard error, we first define the (n × 2) matrix
X = [T (xi; r,x0, v̂) 1n] , i = 1 . . . n used for estimating
the linear parameters k and m. Next, we introduce the con-
trast vector c = [1, 0]T , indicating that k is associated with
the first column of X. The standard error of the vessel con-
trast estimate is then obtained as

std(k) =
√

σ2cT (XT W2X)−1XT W4X(XT W2X)−1c

(7)
where W is the weight matrix used in Eq. 6 and σ2 is the
estimate variance of the residual noise (ε in Eq. 5). When ε is
Gaussian distributed, the t-statistic has an approximate stan-
dardized Gaussian distribution and a t-threshold of around 3
to 4 is therefore suitable. For real data, the threshold should
be put somewhat higher, e.g., between 5 and 8.
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3. VESSEL TRACKING

The tracking algorithm presented in this section is indepen-
dent of the particular vessel model, i.e., it can be used with the
vessel template in the previous section, an elliptical cross sec-
tion model [3], superellipsoids [4] etc., as long as the model
contains a spatial center point x0, a direction indicated by a
unit vector v̂ and a local vessel radius r. These vessel parame-
ters are in this section collectively denoted by β = {r,x0, v̂}.
The aim of the tracking procedure is to create a train of lin-
ear vessel segments β0 → β1 → β2 → . . . that describes
the centerline and radius of the vessel. The process of going
from βt to βt+1 typically involves a prediction and a fit to the
image data. In addition, a score function measuring the good-
ness of fit to the image data is required. This score is used to
compare models and as a termination criterion.

The prediction of the next vessel segment βt+1 is found
as a linear extrapolation from the center point x0 in the direc-
tion v̂ of the current vessel segment βt. The linear prediction
will not be exact for curved vessels but the ensuing fitting
step can in general provide a proper correction. However, one
must also consider the possibility that the vessel may branch
and continue in two different directions. To capture a poten-
tial branching, a range of predictions must be evaluated. In
this work, a systematic scan or sampling of the area in front
of the current vessel segment is used. Formally, a collection
of possible vessel continuations β

(i)
t+1, i = 1, 2, . . . from the

current vessel segment βt is generated. These predictions are
placed evenly on the circle (2D) or sphere (3D) defined by a
±α degrees deviation from the current vessel direction v̂. All
other vessel and image parameters, e.g., the radius and the
vessel contrast, are kept constant in the prediction step. Each
prediction has an associated score which serves as a basis for
the further selection and processing. For the vessel template
model, we use the t-statistic defined in Section 2.5 as score.
Next, the best predictions are fitted to the image data, as de-
scribed in Section 2.4 for the vessel template model. A suit-
able spacing between the generated predictions is around 15
degrees and the step length is in this work taken to be 1.5
times the current radius. A detailed discussion on the choice
of step length can be found in [5].

Due to noise, artifacts and model imperfections, the lo-
cally best prediction is not guaranteed to give the globally
best vessel path. In addition, at branchings two or more pre-
dictions will approximate the correct paths. To address this
problem, multiple predictions or hypotheses are tracked. To
select which predictions to pursue, the score pattern of the
predictions is investigated, see Fig. 3. The score pattern will
normally contain one maximum that lies close to the true ves-
sel trajectory. At bifurcations, however, there will be one
local maxima for each branch. Multiple local maxima may
also occur in problematic regions where the exact vessel path
is unclear. Therefore, to improve the tracking performance,
all local maxima predictions are taken as hypotheses of the
vessel path. This procedure is further elucidated with an ex-
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Fig. 3. Example score patterns of predictions of the next step.
The maxima of these patterns, indicated with the dots, are
taken as possible vessel paths to pursue.

ample, see Fig. 1b. Assume that the current vessel segment
is parameterized by βt. The generated predictions exhibit
two local score maxima, β

(1∗)
t+1 and β

(2∗)
t+1 . Instead of imme-

diately choosing one prediction to pursue, we continue the
tracking from both predictions. A new prediction from β

(1∗)
t+1

gives only one maximum, β(1∗)
t+2 , whereas the predictions from

β
(2∗)
t+1 again gives two maxima: β

(2∗)
t+2 and β

(3∗)
t+2 . Yet another

round of predictions yields the maxima β
(j∗)
t+3 , j = 1 . . . 6.

Each of these predictions represents a possible vessel trajec-
tory from βt. By recursively tracking several trajectory hy-
potheses, a search tree is built. The depth of the tracking tree
is herein denoted the search depth. When we have reached
the pre-determined search depth, we decide where to go from
βt. This is done as follows: the average score along the tree
path leading to each tree leaf β

(j∗)
t+3 , j = 1 . . . 6 is calculated.

Among the leafs that survive a pre-determined score thresh-
old, a branching check is performed as described further be-
low. If no branching is detected, a step is taken from βt to-
wards the leaf with highest average score. If a branching is de-
tected, steps are taken towards the leafs with highest average
scores in each branch. If no leafs survive a pre-determined
threshold, the tracking is terminated.

A branching detection is implemented as a clustering of
the spatial center coordinates of the leafs of the search tree, cf.
Fig. 1b. If the clustering results in two well defined clusters
the tracking has passed a branching.

4. RESULTS

As a first experiment the effect of the tracking search depth is
investigated. To this end, the vessel tracking algorithm is used
to segment a 2D spiral with a radius of 1.5 pixels embedded
in a 256 × 256 Gaussian noise image, see Fig. 4. The maxi-
mum intensity of the spiral is 1 and the variance of the Gaus-
sian noise is 1.0. An isotropic Gaussian smoothing matching
the diameter of the spiral, i.e., with an FWHM of 3 pixels,
was applied as pre-processing. The tracking was then applied
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Fig. 4. Image: Spiral and 100 steps generated with the track-
ing algorithm. Table: Average percentage of the spiral that
the tracking is able to segment with different search depths.

with search depths from 1 to 6 and with a t-score threshold
of 3. A start point was given at the outer end of the spiral
and the spiral tracking was repeated 100 times with differ-
ent noise realizations. For each realization, the percentage of
the spiral that the tracking was able to segment was recorded,
see table in Fig. 4. The tracking performance increases dra-
matically with increased search depth, from 48% with search
depth 1 to 85% with search depth 6. This demonstrates the
improved segmentation robustness offered by tracking multi-
ple hypotheses.

In liver surgery planning, the liver arteries play an impor-
tant role in determining optimal resections and in predicting
blood supply to remaining liver tissue. A problem is that the
liver arteries are small and poorly contrasted in 3D CT an-
giography data. Presently, at our institute, the liver arterial
system is segmented by hand on a daily basis, a procedure
that takes 30-45 minutes for a trained expert. A goal of the
proposed tracking procedure is to facilitate this process. A
segmentation example of a 512× 512× 401 3D CT angiog-
raphy volume is shown in Fig. 5, where a region growing was
first applied to find the initial high-contrast part of the arterial
tree (yellow vessels) and the proposed tracking algorithm was
then automatically initiated at the region growing end points
to track the low-contrast distal parts (red vessels). A search
depth of 4 was used and the tracking takes about 3 seconds.
Two branches that were not found by the region growing were
initiated manually for the tracking algorithm (green vessels).
This example illustrates how the tracking algorithm can be
used with other vessel segmentation methods and how it can
be used both for automatic as well as for semi-automatic seg-
mentation.

5. DISCUSSION

Template matching and tracking are a well-known concepts in
the computer vision community. One of the contributions in
this paper is the general formulation of a vessel template func-
tion parameterized by the radius, direction and center point.
Another contribution is the search tree for vessel tracking,

Fig. 5. Segmentation of the liver arteries. Yellow vessels were
found with a region growing. Red and green vessels were
found with the proposed tracking algorithm (automatic and
manual seeding respectively).

which has been shown to increase the performance robust-
ness. Tracking multiple hypotheses may be seen as a way
around the unimodal restriction in the linear Kalman tracking
framework. Another way to overcome this limitation is to em-
ploy so-called Particle Filtering, which recently has been used
for vessel tracking [3]. Whereas the Particle Filter relies on
stochastic predictions of the next tracking step, the tracking
proposed here employs a systematic placement of the predic-
tions (cf. Section 3) which reduces the computational burden.
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